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ABSTRACT

A goal of Warn-on-Forecast (WoF) is to develop forecasting systems that produce accurate analyses and

forecasts of severe weather to be utilized in operational warning settings. Recent WoF-related studies have

indicated the need to alleviate storm displacement errors in both analyses and forecasts. A potential solution

to reduce these errors is the feature alignment technique (FAT), whichmitigates displacement errors between

observations and model fields while satisfying constraints. This study merges the FAT with a local ensemble

transformKalman filter (LETKF) and uses observing system simulation experiments (OSSEs) to vet the FAT

as a potential alleviator of forecast errors arising from storm displacement errors. An idealized truth run of a

supercell on a 250-m grid is used to generate pseudoradar observations, which are assimilated onto a 2-km grid

using a 50-member ensemble to produce analyses and forecasts of the supercell. The FAT uses composite

reflectivity to generate a 2D field of displacement vectors that is used to align the model variables with the

observations prior to each analysis cycle. The FAT is tested by displacing the initial model background fields

from the observations or modifying the environmental wind profile to create a storm motion bias in the

forecast cycles. The FAT–LETKF performance is evaluated and compared to that of the LETKF alone. The

FAT substantially reduces errors in storm intensity, location, and structure during data assimilation and

subsequent forecasts. These supercell OSSEs provide the foundation for future experiments with real data

and more complex events.

1. Introduction

Since Stensrud et al. (2009) first proposed theWarn-on-

Forecast (WoF) paradigm, numerous strides have been

made in the advancement of storm-scale data assimilation

(DA) and numerical weather prediction (NWP) systems.

WoF research focuses on using storm-scale (i.e., ,4-km

grid spacing), short-term (e.g., 0–3h) ensemble forecasts to

predict severe weather. Stensrud et al. (2013) provide an

updated overview of WoF-related experiments and rec-

ommend research should focus on challenges associated

with data assimilation techniques, ensemble analyses, and

model physics parameterizations. Driven by these recom-

mendations, additional WoF-related studies have been

completed with focuses on assimilating satellite and radar

data (e.g., Jones et al. 2015, 2016; Wheatley et al. 2015;

Supinie et al. 2017), assessing the sensitivity of simulated

supercells to horizontal grid spacing (e.g., Potvin and Flora

2015), evaluating the sensitivity of simulated supercells to

the choice of microphysics parameterization scheme (e.g.,

Yussouf et al. 2013; Wheatley et al. 2014; Dawson et al.
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2015; Stratman and Brewster 2017), and designing and

testing a prototype ensemble-based WoF analysis and

forecast system (e.g., Wheatley et al. 2015; Yussouf et al.

2015; Jones et al. 2016). As more experiments are com-

pleted, some common problematic themes have emerged

that require further exploration.

One common problem some recent WoF-related

studies have noted is that simulated supercells tend to

exhibit substantial displacement errors to the north and

east (e.g., Xue et al. 2014; Dawson et al. 2015; Yussouf

et al. 2015; Supinie et al. 2017). This bias may arise from

errors in the model (e.g., grid resolution and physical

parameterizations), observations, and data assimilation

systems. Displacement errors introduced during data

assimilation can produce large errors in storm location

and structure in subsequent forecasts, thereby inhibiting

issuance of timely and accurate warnings for all facets of

severe weather (i.e., tornadoes, large hail, damaging

winds, and flooding). Therefore, the mitigation of dis-

placement errors to improve short-term storm forecasts

directly supports the WoF project.

One promising technique to alleviate displacement

errors during data assimilation is the feature alignment

technique (FAT; Nehrkorn et al. 2015), which is similar

to the feature calibration and alignment technique

(FCA; Hoffman et al. 1995; Hoffman and Grassotti

1996; Grassotti et al. 1999; Nehrkorn et al. 2014), except

without an amplitude-correction component. Different

variants of the FAT and FCA methods have been suc-

cessfully used in previous convection forecasting studies.

Brewster (2003a,b) effectively reduced storm location

errors in analyses and thereby improved convective

forecasts out to 3 h using displacement vectors, com-

puted byminimizing a squared-error difference between

forecast and observation fields. Hsiao et al. (2010)

utilized a tropical cyclone (TC) vortex relocation tech-

nique to improve the TC initializations and forecasts at

all forecast times, especially during the earlier parts of

the forecast period. This TC vortex relocation technique

consists of separating the TC circulation from the

background flow, relocating the TC circulation to match

the observations, and applying the adjusted TC circu-

lation to the background flow.

Nehrkorn et al. (2014) employed the FCA technique

from Grassotti et al. (1999) and expanded on the Hsiao

et al. (2010) method of adding the 2D displacement

field to full model fields without introducing imbal-

ances (which excite undesirable sound and gravity

waves) by accounting for varying terrain. Nehrkorn et al.

(2014) first tested the FCA technique on forecasts and

observations of vertically integrated water vapor for

Hurricane Katrina (2005) in an idealized experiment

and concluded that the phase corrections substantially

improved the background and forecasts, even though

the forecast hurricane vortex still slightly lagged the

observations. Additionally, Nehrkorn et al. (2014) used

an ensemble of composite reflectivity forecasts to assess

the ability of the FCA to characterize the ensemble

dispersion by computing sample covariance statistics for

the original ensemble and a post-FCA ensemble. They

found that the FCA largely corrects for displacement

errors and leaves more homogeneous residual errors,

which results in the background error covariance being

more Gaussian. Instead of using the FCA technique as a

standalone, preprocessing step to data assimilation,

Nehrkorn et al. (2015) implemented the FAT into the

Weather Research and Forecasting data assimilation

system (WRFDA; Barker et al. 2012) and aptly named

it the displacement WRF data assimilation system

(dWRF). Using the Hurricane Katrina (2005) case

again, they found that the dWRF alleviated the large

displacement errors in the analysis and improved the

short-term forecasts.

In all of the aforementioned studies, three-dimensional

variational (3DVar) data assimilation was used. The po-

tential benefits of using the FAT with ensemble data as-

similation and forecasting methods were not explored

until Nehrkorn et al. (2014). A popular and promising

ensemble data assimilation technique for storm-scale

forecasting is the ensemble Kalman filter (EnKF;

Evensen 1994; Snyder and Zhang 2003). Since the FAT

and EnKF have yet to be combined, the present study

seeks to implement the FAT component of the FCA

(from Nehrkorn et al. 2014) into a local ensemble trans-

form Kalman filter (LETKF; Hunt et al. 2007) data as-

similation system to explore the potential contributions

of the FAT to WoF’s goal of improving storm-scale,

short-term forecasts of severe convection. In this initial

study, we evaluate the FAT by performing observing

system simulation experiments (OSSEs) with an isolated

supercell using a coupled Cloud Model 1 (CM1; Bryan

and Fritsch 2002) and LETKF system. Our version of

the FAT is described in section 2, and the OSSE design

is detailed in section 3. Results from the OSSEs are

shown and discussed in section 4. Finally, a summary and

discussion of the results and potential future work is

provided in section 5.

2. Overview of the FAT

a. Cost function

FollowingNehrkorn et al. (2014), the FAT determines a

2Dfield of displacement vectors, which is used in this study

to adjust the model state variables at all levels, by mini-

mizing the difference between observation and forecast
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fields in model gridpoint space by nonlinearly optimizing

the cost function

J5 J
r
[y,H(x), a, b]1 J

p
(a,b), (1)

where Jr is the residual cost function, Jp is the penalty cost

function, y is the set of observations interpolated into

gridpoint space,H is the observation operator, x is the

model forecast field, and a and b are the displacement

FIG. 1. Example application of the FAT. A 50-member ensemble’s PMM composite reflectivity (dBZ; color

shading) and the Truth run’s composite reflectivity (dBZ; black contours) at 5-, 20-, 35-, 50-, and 65-dBZ thresholds

are shown for (a) before and (e) after the use of the FAT. Residual errors (color shading) between the ensemble’s

PMMcomposite reflectivity and the Truth run’s composite reflectivity are plotted for (b) before and (f) after the use

of the FAT. Inset histograms in (b),(f) depict the number of grid points falling within 5-dBZ error bins (green bars),

ideal normal distributions given the mean and standard deviations of the distributions (black solid line), and

zero-bias line (black dashed line). Average displacement vectors retrieved from the FAT and the corresponding

change in the ensemble’s PMM composite reflectivity (dBZ; color shading) are shown for the (c) subdomain and

(d) full domain. The intersection of the horizontal and vertical black dashed lines indicates the location of the

Truth run’s maximum composite reflectivity.
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vectors in the i (east–west grid indices) and j (north–

south grid indices) directions, respectively. [Note

that a and b are labeled di and dj, respectively, in

Nehrkorn et al. (2014).] For this study, the observa-

tion field is composite reflectivity, so H consists

of first computing the 3D reflectivity field using

microphysics-scheme-dependent reflectivity equa-

tions (see the CM1 source code). Next, the column-

maximum reflectivity at every horizontal grid point

is determined to yield the forecast composite re-

flectivity field. The residual cost function is the sum of

squared differences between the observation and

forecast fields across No observations in gridpoint

space weighted by the observational error variance s2
o

and is formally written as

J
r
5 �

No

n51

y
n
2 x

n
(i
n
1 a

n
, j

n
1 b

n
)

� �
s2
o,n

2

. (2)

The penalty cost function constrains the displace-

ments of the forecast field obtained by minimizing the

residual cost function alone and is written as

J
p
5 l

s
J
s
1 l

d
J
d
1 l

m
J
m
1 l

b
J
b
, (3)

where Js is the smoothness function, Jd is the divergence

function, Jm is the magnitude function, Jb is the barrier

function, and ls, ld, lm, and lb are the corresponding

weighting coefficients. In Nehrkorn et al. (2014), the

smoothness function was not nondimensional like the

other cost functions, so for consistency, it is modified

to be

J
s
5

1

Dd

(DL)2

" #2 �
No

n51

 
›2a

n

›i2n
1

›2a
n

›j2n

!2

1
1

Dd

(DL)2

" #2 �
No

n51

 
›2b

n

›i2n
1

›2b
n

›j2n

!2

, (4)

where Dd/(DL)2 is a representative scale differ-

ence between displacements Dd over scale length DL
squared. The smoothness function limits the rate at

FIG. 2. (a) Skew T–logp diagram of temperature (red line), default dewpoint temperature (solid green line), and

adjusted dewpoint temperature used in some experiments (dashed green line) for the 24 May 2011 El Reno

sounding. Hodographs for the (b) default vertical wind profile and (c) fast vertical wind profile used in some

experiments are depicted for the 0–3- (red), 3–6- (yellow), 6–9- (green), and 9–12-km (blue) layers. The black

markers represent the estimated right-moving storm motion vectors.
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which the displacements can vary in space. The divergence

constraint penalizes extreme cases of divergence and

convergence of displacement vectors to prevent un-

realistic adjustments to model field gradients and is

written as

J
d
5 �

No

n51

�
›a

n

›i
n

1
›b

n

›j
n

�2

. (5)

The magnitude constraint suppresses displacements in

data-void areas to avoid unnecessary adjustments of

model fields outside of areas with observations and is

written as

J
m
5 �

No

n51

�a
n

S

�2
1 �

No

n51

�
b
n

S

�2

, (6)

where S is a representative displacement scale that pe-

nalizes displacement vectors larger than itself. Finally,

the barrier constraint severely penalizes displacements

larger than S to prevent excessively large adjustments to

model fields and is written as

J
b
5 �

No

n51

�a
n

S

�20
1 �

No

n51

�
b
n

S

�20

. (7)

Except for the divergence and barrier penalty functions,

Nehrkorn et al. (2014) and other studies using FAT/

FCA (e.g., Hoffman and Grassotti 1996; Grassotti et al.

1999) performed the minimizations in spectral space.

For this study, weminimize the residual and penalty cost

functions in gridpoint space using finite differencing to

calculate their gradients.

b. Application to composite reflectivity fields

For this study, simulated observed and forecast com-

posite reflectivity are used in determining the 2D field of

displacement vectors from the FAT. The simulated

observed composite reflectivity is upscaled from a

higher-resolution grid (i.e., Dx 5 250m) to the coarser

forecast grid (i.e., Dx 5 2 km in our study) using Cress-

man interpolation. Because the minimization in our

version of the FAT is not being done in spectral space,

which would allow for truncating higher-wavenumber

modes, as in previous studies (e.g., Hoffman and

Grassotti 1996; Grassotti et al. 1999; Nehrkorn et al.

2014), and since these experiments are being completed

on convection-allowing scales (i.e., 2-km grid spacing),

two smoothing methods are employed to avoid noisy

displacement vector fields and resulting unrealistic

morphing of storm structures. First, the number of ob-

servations, which exist at every point in the domain grid

for our study, is thinned by a factor of 2. This thinning

not only smooths the retrieved displacement vector

fields, but also substantially lessens the computation

time. Displacement vector fields largely remain similar

when using up to every fifth grid point (not shown), so

some sacrifice in detail can be made for additional

reductions in computation time. Second, a Gaussian

filter with 15Dx kernel width (e.g., the standard

deviation) is applied to the observed and forecast

FIG. 3. The 30-dBZ contours of composite reflectivity for the

Truth run (black lines) and individual ensemble members (green

contours with transparent green shading) at t 5 30min for the

(a) Disp and (b) Fast runs. The intersection of the horizontal and

vertical black dashed lines provides a reference point and has the

same location in both plots.
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composite reflectivity fields. Kernel widths greater than

10Dx produce similar results, while smaller kernel

widths undesirably morph the storm (not shown). Prior

to filtering, the observed and forecast composite re-

flectivity fields are thresholded such that values below a

prescribed percentage (e.g., 90% and 50% are used in

this study) of the maximum values are set to zero. We

use this thresholding to more closely align the locations

of the Gaussian-filtered maximum values and the un-

filtered maximum values. Next, the smoothed observed

and forecast fields are normalized such that the maxi-

mum values in those smoothed fields are the same as the

maximum value in the unsmoothed observed field. This

normalization helps prevent undesirable storm con-

traction or expansion.

In the adjoint of Jr (not shown), a and b are used to

calculate the intervals over which their adjoint equa-

tions are calculated: Da 5 0.1a, Db 5 0.1b. Having

a and b in the denominator precludes initializing all the

elements of a and b to zero. Instead, they are set to

random values between 20.25 and 0.25, except on the

edge of the domain, where they are initialized to zero.

To reduce the FAT computation time, a portion of the

initialization vectors are replaced with an improved

first guess as follows. First, observed and forecast

composite reflectivity values ,0.1 dBZ are masked.

Then, the centers of mass for both the unsmoothed

observation and forecast fields are located. Next, the

displacement vector between the two centers of mass is

calculated by determining a and b in the i and j di-

rections, respectively. Finally, this displacement vec-

tor replaces the original a and b initializations at grid

points where the smoothed observed field exceeds

5 dBZ. Values as large as 60 dBZ can be used for this

threshold, but the 5-dBZ threshold generally results in

smaller residual errors [e.g., root-mean-square errors

(RMSEs) ranging from ;15 to ;19 dBZ] and nearly

constant vectors across the unsmoothed forecast storm

(not shown). As a final step in initializing the dis-

placement vectors, any vectors extending outside the

domain are shortened to terminate within the domain

while preserving the direction of the vectors.

TABLE 1. Experiment names and their associated descriptions.

Experiment labels Description

DispTh Initial displacement of thermal bubbles and Thompson microphysics scheme for 2-km ensembles

DispLG Initial displacement of thermal bubbles and LFO-Goddard microphysics scheme for 2-km ensembles

FastTh Faster storm-motion wind profile and Thompson microphysics scheme for 2-km ensembles

DispAdjqvLG Initial displacement of thermal bubbles, decreased moisture in lowest 2 km, and LFO-Goddard microphysics

scheme for 2-km ensembles

Truth 250-m truth simulation used for pseudoradar observations and verification

NoDA 2-km ensemble with no DA

NoFAT 2-km ensemble with only LETKF DA

FAT90 2-km ensemble with LETKF DA and the FAT, which uses the 90% smoothing threshold

FAT50 2-km ensemble with LETKF DA and the FAT, which uses the 50% smoothing threshold

FAT3gp 2-km ensemble with LETKF DA and the FAT, which uses the 90% threshold and is only applied

when the initial displacement vector is $3 grid points

FAT1st 2-km ensemble with LETKF DA and the FAT, which uses the 90% threshold and is only applied prior to

the first DA

FIG. 4. Timelines for the (top) 2-h Truth and NoDA ensemble simulations and (bottom) 2-km

DA experiments, which include six 10-min cycles followed by a 30-min forecast.

2130 MONTHLY WEATHER REV IEW VOLUME 146

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/146/7/2125/4377075/m
w

r-d-17-0357_1.pdf by N
O

AA C
entral Library user on 11 August 2020



Upon obtaining the smoothed composite reflectivity

fields and the first-guess displacement vectors, the op-

timum a and b are calculated by minimizing J [Eq. (1)]

using a nonlinear conjugate gradient method (Polak and

Ribière 1969). For all our experiments, so 5 7.5 dBZ,

S5 50.0 grid points, Dd5 1.2 grid points, DL5 1.0 grid

point, ls 5 1.0, ld 5 0.5, lm 5 0.1, and lb 5 1.0. We

tested these parameters’ sensitivities by varying their

values (i.e., so 2 [1, 10] dBZ, S 2 [5, 200] grid points,

Dd 2 [0.1, 10] grid points, ls 2 [0, 100], ld 2 [0, 1000], lm
2 [0, 100], and lb 2 [0, 1000]), while holding the other

parameters constant. Through this extensive testing (not

shown), we determined these values are suitable for the

isolated storm scenario explored herein. Since the re-

trieved displacement vectors are on the thinned grid,

the displacement vectors are interpolated to the full

domain grid before being used to align the forecast

fields. As before, vector magnitudes are reduced to

prevent vectors from extending outside the domain. It

is worth noting that the displacement vectors inward

from the domain boundaries are quite similar to the

retrieved displacement vectors for a storm centered

in a much larger domain (i.e., the domain boundaries

have little impact on the displacement vectors near and

FIG. 5. Time–height plots of ensemble-mean maximum vertical velocity (m s21) for the DispTh runs.

Vertical gray lines represent the times when DA is performed; the thicker gray line indicates the time of

the final analysis and initialization of the 30-min forecast. (b)–(g) The RMSEs (m s21) between the Truth

run’s maximum vertical velocities and the DispTh runs’ maximum vertical velocities are annotated in the

upper-right corners.
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around storms). Finally, the 2D field of displacement

vectors is applied to all model state variables at all

vertical levels.

c. Example of FAT impact

To depict the operation and impact of the FAT, we

illustrate results from an experiment in which a

50-member ensemble forecast of an isolated supercell

thunderstorm was displaced ;14 km northeastward of

the true storm (Fig. 1a). Instead of using the ensemble

mean composite reflectivity field, the ensemble

probability-matched mean (PMM; Ebert 2001) com-

posite reflectivity field is used to provide an ensemble

mean composite reflectivity field with similar values

as each individual ensemble member’s composite re-

flectivity field. The initial storm displacement results in a

dipole of residual (i.e., truth2 each ensemble member)

composite reflectivity errors and a non-Gaussian error

distribution (Fig. 1b). The FATdetermines the optimum

2D field of displacement vectors for each ensemble

member forecast and true composite reflectivity fields

(Figs. 1c,d). After the model state fields are adjusted by

the displacement vectors, the ensemble PMM storm is

now collocated with the truth storm (Fig. 1e), greatly

reducing the residual errors and causing them to be

more Gaussian (cf. Figs. 1b,f), as Nehrkorn et al. (2014)

also demonstrated. Most data assimilation methods,

including EnKF, assume background forecast and ob-

servation errors have a Gaussian-shaped probability

density function (PDF), so a more Gaussian distribution

of background forecast errors results in a more optimal

EnKF analysis (Xue et al. 2007).

3. Experiment design

Since supercells produce much of the significant se-

vere weather in the United States, this initial study fo-

cuses on the FAT’s impact on analyses and forecasts of

isolated supercells. An OSSE framework is designed to

evaluate the FAT and its sensitivities using both perfect-

and imperfect-model experiments. Model simulations

are performed using version cm1r18.3 ofCM1 (Bryan

and Fritsch 2002). In OSSEs with data assimilation, we

use an LETKF system developed at NSSL (Thompson

et al. 2015) from the Miyoshi (2011) LETKF code. Both

the Thompson (Thompson et al. 2008) and LFO-

Goddard (Braun and Tao 2000) microphysics schemes

are utilized in these experiments. Other model details

include vertically stretched grid with dz around 100m

near the surface and 700m above 8.2 km, 25-km domain

top, 3-s time step, open-radiative lateral boundary con-

ditions, free-slip bottom and top boundary conditions,

fifth-order horizontal and vertical advection schemes,

weighted essentially nonoscillatory (WENO; Shu 2003;

Shen and Zha 2010) scheme for advecting scalars on the

final Runge–Kutta step only, 1.5-order TKE closure for

LES (Deardorff 1980), and Rayleigh damping for levels

above 20km.

A 2-h simulation of a supercell (Truth) is computed

on an 8003 8003 50 gridpoint domain with 250-m grid

spacing. The Truth run’s simulated supercell is initiated

with a 5-Kwarm bubble (10 km across and 1.5 km deep)

placed at 1.5 km AGL in a homogeneous environment

provided by the 24 May 2011 ‘‘El Reno’’ temperature,

moisture, and wind vertical profiles (Figs. 2a,b; same as

in Tanamachi et al. 2015). The Truth run’s thermal

bubble is initially located at x 5 20 km, y 5 20 km

(origin located at lower-left corner of domain). Output

from the Truth run is used to generate the pseudo-radar

observations (reflectivity and radial velocity) at each

250-m grid point. The pseudo-observations are in-

terpolated onto a 2-km, 100 3 100 3 50-point analysis

grid (that is collocated with the 250-m grid) using a

Cressman weighting function with ;2800-m radius

of influence. The pseudoradar observations are then

output to an observation sequence file using the Data

FIG. 6. Maximum-UH tracks (solid lines) and locations (circle

markers) are shown every 5min from 30 to 120min for the Truth

(black) and DispTh ensemble runs. The UH locations in the latter

are determined using the ensemble probability-matched means for

UH. Small (large) circle markers designate UH locations during

the 60-min DA (30-min forecast) period. Average location errors

during the forecast period are annotated in the bottom right. (top

left) The inset plot depicts the average locations of the forecast UH

centers relative to the Truth run’s UH centers at the same times.

For reference, the Truth run’s average storm motion direction

during the 30-min forecast period is represented by the black

dashed line.
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Assimilation Research Testbed (DART; Anderson

et al. 2009) format so that they can be assimilated into

theCM1–LETKF system. Note that the radial velocity

field assumes the radar is located at the center of the

domain at 0m AGL.

Four sets of data assimilation experiments are con-

ducted, all with 50-member ensembles. For each ex-

periment set, an ensemble of simulations is produced to

provide the background fields for the first analysis.

These no-data-assimilation (NoDA) simulations ini-

tialize convection with a thermal bubble having the

same shape as in the Truth run, but with a 6-K pertur-

bation. To create ensemble spread, the bubble locations

are randomized by adding a set of perturbations ran-

domly drawn from a Gaussian distribution (standard

deviation 5 4 km) to the mean bubble location. The

Truth run uses the Thompson two-moment microphys-

ics scheme (Thompson et al. 2008). To test the FATwith

FIG. 7. The 1-km simulated reflectivity at 20, 30, 40, 50, and 60 dBZ (green contours), 2–5-km UH at 500 and 2000m2 s22 (magenta

contours), and potential temperature (K) at the lowest model level (blue shading) are depicted for the (a) Truth and (b)–(g) various

DispTh ensemble runs valid at t 5 95min. Note that the PMM fields are used for the ensembles’ output. The RMSEs for the PMM

simulated reflectivity fields are annotated in green in (b)–(g). The intersection of the horizontal and vertical dashed lines represents the

Truth run’s max-UH location.
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both perfect- and imperfect-model physics, two sets of

experiments use the Thompson scheme (Th), while the

other two use the LFO-Goddard microphysics scheme

(LG; Braun and Tao 2000).

Two of the four sets of data assimilation experiments

use background fields from 2-km NoDA ensembles,

which use a perfect environment and have thermal

bubbles inserted ;14 km northeastward (10 km east-

ward and northward) of the Truth run’s bubble location

(DispTh and DispLG; Fig. 3a; Table 1). Another set of

experiments uses background fields from 2-km NoDA

ensembles that use a vertical wind profile that pro-

duces 10m s21 faster stormmotion than the default wind

profile (Fig. 2c) and mean thermal bubbles collo-

cated with the Truth run’s bubble (FastTh; Fig. 3b;

Table 1). Finally, we conduct a set of experiments (i.e.,

DispAdjqvLG) that are similar to the DispLG experi-

ments, except that the boundary layer in the NoDA

ensemble is drier than in the Truth run (Fig. 2a; Table 1).

Themixing ratio is adjusted following a sine curve with a

3% decrease at the surface (i.e., ;0.58C decrease in

dewpoint temperature) and 0% change at 2 km AGL.

This adjustmentmimics cases where analysis errors arise

from errors in observations and/or boundary layer pa-

rameterization schemes (e.g., Coniglio 2012; Coniglio

et al. 2013). In addition to providing the background

fields for the data assimilation experiments, the NoDA

ensembles provide a baseline for assessing data assimi-

lation, grid spacing (i.e., 250m vs 2 km), and environ-

ment error impacts on the modeled storm evolution.

Most of the data assimilation experiment sets de-

scribed above comprise the following experiments

(Table 1): FAT not applied (NoFAT), FAT applied

with the 90% or 50% smoothing thresholds (FAT90

and FAT50, respectively), FAT only applied prior to

the first data assimilation cycle (FAT1st), and FAT

applied only when the centers of mass of the smoothed

observation and forecast fields are$3 grid points apart

(FAT3gp). The 90% smoothing threshold is used for

both the FAT1st and FAT3gp experiments. For the

DispAdjqvLG experiments, only the NoDA, NoFAT,

and FAT90 simulations are produced. For all data as-

similation experiments, the first analysis update is

performed at t 5 30min using the NoDA ensemble

forecast valid at that time as the background state. This

first analysis update is followed by six 10-min data as-

similation cycles. Additive noise (Dowell and Wicker

2009) is applied to the wind components (i.e., u, y, andw),

potential temperature, and dewpoint temperature

(which is then translated into the water vapor mixing

FIG. 8. As in Fig. 7, but only for the NoDA, NoFAT, and FAT90 ensembles at t 5 120min.
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ratio field) fields where reflectivity .30 dBZ. In ex-

periments using the FAT, the technique is run im-

mediately before each analysis update. After the final

analysis (t 5 90min), forecasts are integrated to t 5
120min (Fig. 4).

4. Results

a. Initial displacement experiments

1) PERFECT MICROPHYSICS

Unlike the Truth run and DispTh_NoDA, DispTh_

NoFAT’s storm fails to develop a strong updraft [e.g.,

.50ms21; note these values are supported by previous

observations (e.g., Lehmiller et al. 2001)] until after the

final data assimilation cycle (Fig. 5c) and fails to

develop a strong low-level updraft (e.g., .25m s21

below 3 km) at any time (Figs. 5a–c). In contrast, all

of the ensembles that use the FAT produce deep,

intense updrafts similar to those in DispTh_NoDA

(cf. Figs. 5b,d–g). Moreover, updraft speeds in these

ensembles approach those in the Truth run sooner than

those in DispTh_NoDA do. Also, the depth and in-

tensity of the updrafts in the ensembles using the

different FAT variations are quite similar. In addition

to these subjective evaluations, RMSEs between the

Truth run’s maximum vertical velocities and the

DispTh runs’ average maximum vertical velocities are

computed; these agree with the subjective comparisons

(cf. Figs. 5b–g). Thus, applying the FAT only to the first

FIG. 9. As in Fig. 5, but for DispLG.
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analysis (DispTh_FAT1st) is sufficient in this experi-

ment to alleviate the errors produced in DispTh_

NoFAT (cf. Figs. 5c,g).

The use of only LETKF in DispTh_NoFAT yields

forecasts with substantially larger average displacement

errors during the forecast period than DispTh_NoDA

(i.e., 19.1 vs 10.9 km; Fig. 6). This result stems from the

LETKF’s inability to properly handle the large, non-

Gaussian errors associated with the initial displacement,

which contributes to the storm being weaker and re-

maining elevated above the boundary layer longer.

Hence, DispTh_NoFAT’smean storm location is well to

the north of the Truth and DispTh_NoDA runs’ storm.

Conversely, the inclusion of the FAT greatly reduces the

displacement errors in the other ensembles, with aver-

age forecast errors #4 km (Fig. 6).

To highlight the impacts of the different data assimi-

lation methods on storm structure, we now examine

ensemble output valid 5min into the 30-min forecast

initialized from the final analysis (i.e., t 5 95min). At

this time, the differing effects of the various data as-

similation procedures are still mostly present, while the

model effects are beginning to become more apparent.

Comparing each ensemble’s PMM ;1-km reflectivity

(i.e., model level 8), the most noticeable difference is

that DispTh_NoFAT’s storm is by far the smallest

(Fig. 7c). This result is not attributable to using the PMM

technique in forming the ensemble mean fields since

there is little ensemble spread, and individual members’

storms are similar in size (not shown). For DispTh_

NoDA, the PMM technique causes the individual en-

semble members’ reflectivity hook echo to become

nonexistent for reflectivities greater than 20 dBZ, owing

to larger ensemble spread (Fig. 7b). However, the gen-

eral shape and size of DispTh_NoDA’s PMM storm is

similar to the individual members’ storms.

In addition to having a smaller storm, DispTh_

NoFAT has a weaker, smaller mesocyclone than the

Truth run and the other ensembles per the 2–5-km

updraft helicity (UH; Kain et al. 2008) field (Fig. 7c),

and its cold pool intensity and structure least resemble

those of the Truth run. In contrast, the ensembles in-

corporating the FAT produce reflectivity, UH, and near-

surface potential temperature fields substantially more

similar to the Truth run’s fields (Figs. 7a,d–g). This result

is objectively supported by the RMSEs between the

Truth run’s 1-km reflectivity field and the ensembles’

location-corrected (i.e., using the locations of maximum

UH) PMM 1-km reflectivity fields where observed or

forecast reflectivity exceed 20 dBZ (Figs. 7b–g). At t 5
120min (i.e., 30-min forecast), the impact from using the

FAT is still clearly apparent in the reflectivity and sur-

face cold pool features (cf. Figs. 7b–d, 8b–d). Generally

speaking, the FAT in these perfect-model (apart from

grid spacing) experiments substantially improves the

analyses and forecasts of the supercell.

2) IMPERFECT MICROPHYSICS

Unlike DispTh_NoDA’s storm in the perfect-

microphysics experiments, DispLG_NoDA’s storm

erroneously weakens during t 5 80–100min before re-

strengthening during the final 15min of the 30-min

forecast (Fig. 9b). Ideally, the use of data assimilation

would mitigate the effects of the microphysical errors

and thereby improve the analyzed storm intensity.

However, the DispLG_NoFAT storm struggles to de-

velop an intense, deep updraft during and immediately

after the data assimilation window (Fig. 9c). Applying

the FAT prior to the analysis updates, on the other hand,

generally improves upon DispLG_NoFAT through t 5
100–110min, though the depth of the intense portion of

the updraft erroneously decreases toward the end of the

forecast period (Figs. 9d–g). Of all the ensembles,

DispLG_FAT90’s updraft best matches the Truth run’s

updraft evolution by sustaining an intense, deep updraft

(e.g., vertical velocities. 55ms21) through the entirety

of the forecast period (i.e., t5 90–120min; cf. Figs. 9a,d).

While the FAT does not improve storm location as

much in these imperfect-microphysics runs as in the

perfect-microphysics (DispTh) runs, the location errors

are still reduced up to ;66% when compared to

DispLG_NoDA (Fig. 10). Once again, the LETKF-only

experiment, DispLG_NoFAT, yields a storm that is

much farther north than in the other experiments. The

DispLG_NoFAT storm closely tracks the Truth run’s

FIG. 10. As in Fig. 6, but for DispLG.
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storm in longitude, but as depicted in Fig. 11c, this is

likely attributable to the DispLG_NoFAT storm being

weaker, producing a warmer cold pool, and therefore

experiencing slower forward propagation, which fortu-

itously compensates for its initial eastward displace-

ment. As shown in Fig. 10, running the FAT beyond the

first analysis cycle can be counterproductive (e.g.,

DispLG_FAT90 vs DispLG_FAT1st). Specifically, the

90% smoothing threshold (DispLG_FAT90 and

DispLG_FAT3gp) can cause the smoothed reflectivity

fields to vary more in location due to the relatively large

variability of higher-reflectivity characteristics (e.g.,

location, size, and shape), as compared to using the 50%

smoothing threshold (DispLG_FAT50). This sensitivity

can result in undesirable adjustments by the FAT. For

example, DispLG_FAT90 and DispLG_FAT3gp have

larger average forecast errors than the other FAT en-

sembles mainly due to the final FAT computation in-

creasing the storm displacement error (Fig. 10). Even

with this error increase, however, the inclusion of the

FAT still reduces storm location errors more than data

assimilation alone (DispLG_NoFAT).

Similar to the DispTh experiments, the storm pro-

duced by DispLG_NoFAT is much smaller than the

FIG. 11. As in Fig. 7, but for DispLG.
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Truth run’s storm and the other ensembles’ storms,

while the ensembles with FAT produce larger storms

that better resemble the Truth storm (Fig. 11). The

ensembles using the FAT tend to produce weak con-

vection to the north of the supercell, but this convec-

tion has negligible impact on the supercell. Since weak

convection develops in the Truth run as well (not

shown), we do not regard this additional convection

as a major fault of the FAT. As in the perfect-

microphysics experiments, the updraft in the LETKF-

only ensemble is smaller and weaker than in the other

ensembles (cf. Figs. 11b–g). The ensembles using the

FAT produce cold pools that tend to be a little colder

than the Truth’s cold pool, similar to DispLG_NoDA’s

cold pool (cf. Figs. 11a,b,d–g). This bias presumably

arises largely from microphysics errors and perhaps

also from the coarse grid spacing. As previously men-

tioned, DispLG_NoFAT’s cold pool is too warm owing

to the storm being weaker (Fig. 11c). Overall, as in the

perfect-microphysics experiments, the FAT again

produces substantial improvements in storm intensity,

location, and structure.

b. Fast sounding with perfect microphysics

With the faster vertical wind profile, the ensembles’

storms are displaced;18kmnortheastward of the Truth

run’s storm at the time of the first data assimilation (i.e.,

;4 km farther away than in the Disp experiments; cf.

Figs. 3a,b). Since there is now a continuous forcing for

storm motion bias, the displacement errors that must be

corrected at the end of each forecast cycle are larger

than in the perfect-environment experiments. These

FIG. 12. As in Fig. 5, but for FastTh.
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experiments, therefore, test the impact of the FAT in the

common scenario where a storm motion bias persists

through the data assimilation window and into the free

forecast. The storm in FastTh_NoDA (Fig. 12b) takes

;10–15min longer to develop than the storm in

DispTh_NoDA (Fig. 5b) likely owing to the increased

diffusion in the advection terms resulting from the faster

wind speeds (Knievel et al. 2007). In all of the data as-

similation experiments, a strong storm updraft develops

;10min earlier than in FastTh_NoDA (cf. Figs. 12b–g).

The updraft in FastTh_NoFAT, however, is erroneously

weaker and shallower than in FastTh_NoDA (cf.

Figs. 12b,c). Conversely, FastTh_FAT90 produces the

deepest and generally strongest updraft (Fig. 12d), and

the updraft evolution in the remaining ensembles like-

wise generally better matches the Truth run than does

FastTh_NoFAT, which is evident in the RMSEs as well

(Fig. 12). Note that the decrease in FastTh_FAT3gp’s

maximum vertical velocities after the last data assimi-

lation (Fig. 12f) likely originates from the LETKF and

not the FAT. This inference was determined by exam-

ining themaximum vertical velocity field before and after

the FAT and before and after the LETKF data assimi-

lation. Even so, the FastTh_FAT3gp storm quickly re-

covers during the forecast.

Unlike in theDisp experiments, FastTh_NoFAT’s storm

track mostly remains south of FastTh_NoDA’s storm

track (Fig. 13), consistent with FastTh_NoFAT’s storm

becoming organized sooner than in DispTh_NoFAT

and DispLG_NoFAT (cf. Figs. 5c, 9c, 12c). However,

FastTh_NoDA’s forecast-storm track lies north of the

Truth run’s storm track and the FAT ensembles’ storm

tracks. Displacement errors in the ensembles with FAT

applied are reduced up to ;76% over FastTh_NoDA’s

displacement errors. Even running the FAT only once

(i.e., FastTh_FAT1st) reduces the displacement errors

;44%, as compared to only;15% for FastTh_NoFAT.

Furthermore, all of the ensembles using the FAT yield

storm tracks that are more in line with the Truth run’s

storm track, except with the fast storm motion bias

(Fig. 13).

All of the ensembles with data assimilation, especially

FastTh_FAT90, FastTh_FAT3gp, and FastTh_FAT50,

have storms with 1-km reflectivity structures closer in

shape to the Truth run’s storm than FastTh_NoDA’s

storm through the end of the forecast period (e.g.,

Fig. 14). Unlike in the Disp experiments, the storm in

FastTh_NoFAT is not substantially smaller than in the

Truth run and the other ensembles through the entire

forecast period (Fig. 14). However, as in the Disp ex-

periments, FastTh_NoFAT’s storm is generally less or-

ganized than in the other ensembles through most of the

data assimilation period (e.g., Fig. 12), presumably

attributable to the negative impact from the LETKF’s

handling of the constant introduction of displacement

errors (not shown). At t 5 95min, FastTh_FAT90,

FastTh_FAT3gp, and FastTh_FAT50 have well-

established cold pools whose structure and, less so, in-

tensity resemble that of the Truth’s cold pool (cf.

Figs. 14a,d,e,g). FastTh_NoFAT and FastTh_FAT1st’s

cold pools are weaker but improve through the rest of

the forecast period (not shown). Overall, the FAT once

again improves analyses and forecasts, this time in the

scenario where the model storm continually outpaces

the observed storm during the forecast cycles.

c. Adjusted BL moisture

To evaluate the impact of the FAT in the presence of

another common source of forecast error, some of the

imperfect-microphysics experiments were repeated with

themoisture in the lowest 2 kmAGLof the initialization

sounding reduced, as described in section 3. The drier

boundary layer causes DispAdjqvLG_NoDA to fail at

sustaining updraft speeds.25ms21 through most of the

2-h simulation (Fig. 15b). Incorporating no-FAT data

assimilation (i.e., DispAdjqvLG_NoFAT) actually fur-

ther degrades the storm, except near the end of the

forecast period (Fig. 15c). Conversely, the inclusion of

the FAT (i.e., DispAdjqvLG_FAT90) yields maximum

vertical velocities greater than 50m s21 during the entire

forecast period (Fig. 15d).

As implied by the updraft speed composites,

DispAdjqvLG_NoDA has a small, elevated storm with

little rotation at 5min into the forecast period (Fig. 16b).

Even worse, DispAdjqvLG_NoFAT at this time has two

FIG. 13. As in Fig. 6, but for FastTh.
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very weak, unorganized convective cells with a cold pool

that (not surprisingly) is too warm (Fig. 16c). Dis-

pAdjqvLG_FAT90, on the other hand, has a rotating

storm with an established cold pool (Fig. 16d). These

results indicate that data assimilation by itself can be

very sensitive to the combination of storm displacement

and environment errors, even to the point of failing to

establish a supercell after several analysis cycles. More

specifically, the storm displacement errors contribute to

non-Gaussianity of errors and large analysis increments,

both of which degrade the analysis updates. This deg-

radation of the analysis updates presumably explains the

occasional erroneous weakening of the model storm

during the data assimilation process (e.g., after t 5 30,

60, and 80min in Fig. 15c). By alleviating the storm

displacement errors, the FAT reduces the LETKF’s

sensitivity to these errors, potentially resulting in far

superior analyses and forecasts of storms.

d. Observation-space diagnostics

To further evaluate the FAT’s impact on analyses,

observation-space diagnostic statistics, including mean

innovation (MI), root-mean-square innovation (RMSI),

and consistency ratio (CR), are computed from the

FIG. 14. As in Fig. 7, but for FastTh.
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reflectivity priors for the NoFAT and FAT90 ensembles

in the DispTh, DispLG, and FastTh experiments. The

priors in the FAT90 ensembles are taken from the

phase-corrected reflectivity field. The statistics calcula-

tions are restricted to grid points where observed or

forecast reflectivity is $10dBZ. The equations for MI

and CR can be found in Dowell and Wicker (2009), but

it is important to note that the equation for RMSI, which

is the denominator of the CR equation, is not that given

in Dowell and Wicker [2009, Eq. (3.2)]—which is actu-

ally the innovation variance—but rather that given in

Dowell et al. [2011; Eq. (4.1)].

Beginning with MI, applying the FAT prior to DA

reduces the initial reflectivity bias by at least 5 dBZ in all

three sets of experiments (Fig. 17a). At some data as-

similation times, the NoFAT ensembles have a smaller

bias than the FAT90 ensembles, but this lower bias

could be the result of LETKF expanding the area of

reflectivity by introducing a new storm where the Truth

storm exists while not removing the original displaced

storm. Starting at t 5 50min for DispLG, t 5 60min for

DispTh, and t 5 70min for FastTh, the FAT90 ensem-

bles exhibit a lower bias for the rest of the DA window,

including a near-zero bias for DispTh_FAT90 and

FastTh_FAT90 at t5 90min (Fig. 17a). Conversely, the

NoFAT ensembles have biases.7 dBZ prior to the final

DA (Fig. 17a). The lower mean innovations for the

FAT90 ensembles translate into substantially lower

RMSI values, as compared to the NoFAT ensembles

(i.e., 2–7 dBZ lower through the second half of the DA

window; Fig. 17b).

Prior to the first DA cycle, the NoFAT ensembles

have higher CR values (i.e., ;0.5–0.55 vs ;0.3–0.4),

owing to their having larger ensemble spread (not

shown) than the FAT90 ensembles (Fig. 17c). This result

is expected, since the first application of FAT reduces

the ensemble spread. After the first or second data as-

similations, however, the FAT90 ensembles begin to

exhibit larger CR values than the NoFAT ensembles

(Fig. 17c), owing to the smaller RMSI in the former.

During the second half of the DA window, the CR

values for DispTh_FAT90 and FastTh_FAT90 rapidly

increase to values around 1, which indicates good en-

semble dispersion (Fig. 17c). While CR values for

DispLG_FAT90 only increase to near 0.45 by the end of

the DA window, they are still substantially larger than

for DispLG_NoFAT (i.e., ;0.15 difference; Fig. 17c).

Overall, the FAT produces smaller innovations and

therefore better ensemble dispersion. Qualitatively

similar results were obtained for the other FAT variants

and for the radial velocity priors as well (not shown).

5. Summary and discussion

Storm displacement errors can originate from biases in

both parameterization schemes and the analyzed storm

environment and are potentially exacerbated during data

assimilation. The alleviation of these errors would directly

benefit the WoF project’s goal of providing accurate

storm-scale analyses and short-term forecasts of severe

convection to meteorologists in an operational warning

setting. As a potential step toward reducing storm dis-

placement errors, we introduced a new version of the

feature alignment technique (FAT) from Nehrkorn et al.

(2014). In our version, the FAT minimizes a cost function

between observed and forecast composite reflectivity fields

to produce a 2D field of displacement-correcting vectors.

Similar to Nehrkorn et al. (2014), our cost function is

composed of a residual error term and four penalty terms,

including smoothness, divergence, magnitude, and barrier.

FIG. 15. As in Fig. 5, but for DispAdjqvLG.
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In contrast to Nehrkorn et al. (2014) and other previous

feature calibration and alignment (FCA) studies, who

perform some or all of the minimization in spectral space,

ourminimization of the cost function is performed entirely

in gridpoint space, so our version of the FAT incorporates

additional smoothing techniques, including grid thinning

and smoothing of the observed and forecast composite

reflectivity fields.

The FAT was merged with the NSSLCM1–LETKF

system as a standalone program that runs prior to each

analysis update. A data assimilation OSSE framework

was designed to assess the FAT’s impact on storm-scale

analyses and short-term forecasts of an isolated supercell.

A 2-h Truth simulation of an isolated supercell was

generated on a 250-m grid and provided pseudo-radar

observations and verification for the experiments. Four

2-km ensemble simulations without data assimilation

(i.e., NoDA) and with mean storm initialization location,

initialization sounding, and/or microphysics scheme dif-

fering from the Truth run were produced to provide

backgrounds for the corresponding data assimilation ex-

periments. Analyses and subsequent forecasts generated

using either data assimilation alone or combinedwith one

of four variations of the FAT were evaluated against the

250-m Truth run and 2-km NoDA ensembles.

In all of the OSSEs, the FAT successfully corrected lo-

cation errors during the data assimilation window, thereby

greatly improving storm intensity, spinup time, and struc-

ture without introducing detrimental model imbalances.

These improvements persisted into the 30-min forecasts

initialized from the final analysis. Forecast location and in-

tensity results are summarized in Fig. 18. These results re-

veal the substantial improvement in storm locations for all

FAT ensembles while maintaining or improving storm in-

tensity accuracy (Fig. 18). The LETKF-only (i.e., NoFAT)

forecasts performed the worst for both metrics (Fig. 18).

The FAT was particularly valuable in the dry boundary

layer experiments, in which data assimilation alone pro-

duced only a weak storm. In experiments where an initial

displacementwas present but not reinforced throughout the

data assimilation window, running the FAT only at the first

analysis cycle sufficed to drastically improve analyses and

forecasts. However, when a storm motion bias was intro-

duced (via a stronger environmental wind profile) to in-

crease displacement errors during each forecast cycle,

running the FAT at every data assimilation step (rather

than just the first one) produced more benefit.

In addition to the experiments shown in this study,

we conducted experiments using the fast sounding with

imperfect microphysics (i.e., FastLG) and experiments

FIG. 16. As in Fig. 7, but for DispAdjqvLG.
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combining the fast sounding with perfect and imperfect

microphysics and with the Truth run’s storm displaced

northeastward to reduce the initial storm displacement

from;14 to;8.5km. These experiments yielded the same

general results as those presented herein. Overall, the

OSSE results suggest the FAT can improve analyses and

short-term forecasts from real convection-allowing en-

semble systems. More specifically, as shown by the exper-

iments, correcting phase errors using the FAT during data

assimilation can lead to a reduction in the northward and

eastward bias commonly exhibited by convection-allowing

forecast systems. Ideally, there would not be a need for

storm-displacement correction techniques like the FAT.

However, storm-scale NWP phase errors are unlikely to

dramatically improve in the foreseeable future, so the FAT

or other similar error mitigation methods will continue to

be valuable and needed for effective data assimilation.

In future studies, additional OSSEs will be conducted

using events with multiple supercells, mesoscale convec-

tive systems, and mixed modes. Since forecasts in the

experiments herein were only produced out to 30min,

future experiments will explore how long the FAT’s

beneficial impact in forecasts lasts. Beyond that, the FAT

will be tested in real-data frameworks with full model

physics using isolated supercell cases to start and even-

tually more complex (e.g., mixed mode) events. These

FIG. 17. Observation-space diagnostic statistics, including (a) MI (dBZ), (b) RMSI (dBZ), and (c) CR, are

plotted for forecast reflectivity. The ensembles used include DispTh_NoFAT (solid blue line), DispTh_FAT90

(dashed blue line), DispLG_NoFAT (solid green line), DispLG_FAT90 (dashed green line), FastTh_NoFAT

(solid red line), and FastTh_FAT90 (dashed red line).
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real-data experiments will be performed using a forecast

system similar to the NSSL Experimental WoF System

for ensembles (NEWS-e;Wheatley et al. 2015; Jones et al.

2016). Before those real-data experiments can be com-

pleted, terrain effects will need to be incorporated into

the FAT as in Nehrkorn et al. (2014). Throughout these

future tests, the tunable FAT parameters will need to be

tuned to static or dynamic values based on sensitivities to

storm mode and geographic location. The FAT could

ultimately provide great value to an operational Warn-

on-Forecast ensemble system.
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